## *Kinematics of gravity-capillary waves under an evolving underwater current*

#### **International Ocean Vector Winds Science Team Meeting 2025**

Clara Martin Blanco<sup>1</sup>, Jiarong Wu<sup>1</sup>, Nicolo Scapin<sup>1</sup>, Stéphane Popinet<sup>2</sup>, Tom Farrar<sup>3</sup>, Bertrand Chapron<sup>4</sup> and Luc Deike<sup>1</sup>,<sup>5</sup>

<sup>1</sup>Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA <sup>2</sup>Institut Jean Le Rond d'Alembert, CNRS UMR 7190, Sorbonne Université, Paris 75005, France, <sup>3</sup>Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA <sup>4</sup>Ifremer, 29280 Plouzané, France, <sup>5</sup>High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, US



MECHANICAL & AEROSPACE ENGINEERING









#### Motivation: Remote Sensing and Gravity-Capillary Waves



*Farrar et al., 2021. Observations of Ocean Surface Currents.* 

Studies submesoscale dynamics using these techniques





 $2\lambda sin(\theta) = \lambda_e$ 



Bodega Marine Laboratory

Some Remote sensing techniques are sensitive to gravity-capillary waves due to Bragg scattering and surface roughness.

Linear Dispersion Relation for Gravity-Capillary waves

**Dispersion relation** for gravity-capillary waves

$$\omega(k) = \sqrt{gk + \frac{\sigma}{\rho}k^3}$$

$$wavelength$$

$$\lambda = \frac{k}{2\pi}$$

g 
ho

How are currents affecting Gravity-Capillary waves?

Let's start considering a **constant velocity** U

Ζ

Х

$$\omega(k) = \sqrt{gk + \frac{\sigma}{\rho}k^3} + \mathbf{u} \cdot \mathbf{k}$$
 Doppler effect

When current flows in same direction as wave, **observed frequency increases** 

$$\sigma, \rho$$

In reality, ocean currents vary with depth

 $\omega(k) = \sqrt{gk + \frac{\sigma}{\rho}k^3 + \mathbf{u}\cdot\mathbf{k}}_{\text{Doppler effect}}$ Ζ Х U(z)Which velocity now that U depends on z?

In reality, ocean currents vary with **depth** 

$$\omega(k) = \sqrt{gk + \frac{\sigma}{\rho}k^3 + u_{eff}(k)k}$$
Doppler effect
$$U(z)$$
Which velocity now that U
depends on z?

In reality, ocean currents vary with depth

 $\omega(k) = \sqrt{gk + \frac{\sigma}{\rho}k^3 + u_{eff}(k)k} \\ \underset{\text{Doppler effect}}{\text{Doppler effect}}$ Ζ X  $\mathbf{Z}$ Waves with different **wave-number** "see" velocities at different depths 7

In reality, ocean currents vary with **depth** 

$$\omega(k) = \sqrt{gk + \frac{\sigma}{\rho}k^3} + u_{eff}(k)k$$
  
Doppler effect  
$$\mathbf{U}(\mathbf{z})$$
$$u_{eff}(k) = 2k \int_0^\infty u_L(z)e^{-2kz}dz$$

DNS Two-Phase Flow Setup (Based on Wu et al. 2022)

Waves forced by a turbulent boundary layer



(Wu et al. 2022)

#### Several non-dimensional parameters

 $u_*/c = 0.25, 0.5, 0.75$  Wind forcing  $Re_{\tau} = rac{
ho_a u_* H_a}{\mu_a} = 720$  Turbulent air Reynolds number  $k_p H_s = 0.08, 0.16$  Initial wave amplitude  $Bo = \frac{(\rho_w - \rho_a)g}{k_n^2 \sigma} = 200$  Wave Bond number  $Re_w = \frac{\rho_w c \lambda_p}{\mu_w} = 720$  Wave Reynolds number



Basilisk: Open-source solver (developed by Stephane Popinet): http://basilisk.fr/



#### Mean flow: Turbulent Boundary Layer in air



#### Mean flow: Developing viscous layer in water



**Developing viscous layer** that will transition to a **turbulent boundary layer** 

$$U_0(t) = \tau \frac{\Gamma(1)}{\Gamma(3/2)} \frac{\sqrt{\nu_w t}}{\mu_w} = u_*^2 \frac{\rho_a}{\rho_w} \frac{\Gamma(1)}{\Gamma(3/2)} \sqrt{t/\nu_w}$$

(Veron & Melville, 2001)

#### Mean flow: Turbulent boundary layer in water



 1.Viscous momentum diffusion
 2. Fully developed turbulence

### Now we want to look to the space-time spectrum and its evolution





How do energy branches evolve in time?



#### Branches Time Evolution: Shift from Linear Dispersion Relationship



#### Branches Time Evolution: Shift from Linear Dispersion Relationship $I = [0, 5] (t/T_p)$ $I = [0, 5] (t/T_p)$ 8--1 $k_f = 1.0k_p$ $\Phi(\omega, k_f, I)/\Phi_{max}$ $k_f = 3.0k_p$ $\Phi(\omega,k,I)/\Phi_{max}$ 6 $k_{f} = 4.0k_{p}$ $a_{m/\alpha}^{d}$ $\sqrt{k \cdot g + \sigma / \rho \cdot k}$ 2N=1-15N=2N=3-13 0. 0 $\hat{2}$ 3 4

6



#### **Branches Time Evolution:** First Branch



#### Branches Time Evolution: Doppler shift first branch



#### Branches Time Evolution: Doppler shift first branch



Primary mode

$$(k_*, \omega_*)$$

Primary mode

Non-linear (non-resonant) interaction with itself

Higher harmonics

 $(2k_{*}, 2\omega_{*})$ 

 $(k_*, \omega_*)$ 

Primary mode

Non-linear (non-resonant) interaction with itself

 $(k_*, \omega_*)$ 

Higher harmonics

 $(2k_*, 2\omega_*)$  $(3k_*, 3\omega_*)$ 

Primary mode

Non-linear (non-resonant) interaction with itself

 $(k_*, \omega_*)$ 

Higher harmonics

 $(2k_*, 2\omega_*)$  $(3k_*, 3\omega_*)$ 

$$k_N = Nk_*$$
$$\Omega_N = N\omega_*$$

Branches Time Evolution: Higher harmonicsHigher harmonicsPrimary modeNon-linear (non-resonant)  
interaction with itselfHigher harmonics
$$(k_*, \omega_*)$$
 $(2k_*, 2\omega_*)$   
 $(3k_*, 3\omega_*)$  $(3k_*, 3\omega_*)$   
 $\downarrow$  $\Omega_N(k_N) = N\sqrt{gk_N/N + \frac{\sigma}{\rho}(k_N/N)^3}$  $k_N = Nk_*$   
 $\Omega_N = N\omega_*$ 



#### Branches Time Evolution: NLDR second branch



#### Branches Time Evolution: NLDR all branches



#### Branches Time Evolution: phase speed higher modes



#### Branches Time Evolution: what's the speed of higher modes?



#### Branches Time Evolution: what's the speed of higher modes?



#### Branches Time Evolution: higher modes travel same phase speed that primary one



# Does the nonlinear dispersion relation hold across different wind and wave initial conditions?

#### Validation of dispersion relation and depth dependent velocity over different initial conditions



#### Validation of dispersion relation and depth dependent velocity over different initial conditions



#### Conclusions

- We performed DNS of fully coupled wind-forced broad-banded wave fields using the open-source solver Basilisk, extending the work of Wu, Popinet, and Deike (2022, JFM).
- The flow is characterized by a turbulent boundary layer on the air side and a viscous self-similar boundary layer in the water, which transitions to a turbulent state.
- Analysis of the evolution of the wavenumber-frequency wave spectra in time:
  - We validate a Non Linear Equation that accounts for the different harmonics:\.
  - **Doppler** shift is characterized with a using a **weighted average depth-varying velocity** integrated from the **DNS**.











Bo = 25

